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ON STABILITY CONDITIONS FOR THE NONISOTHERMIC COUETTE FLOW* 

v. v. KOLESOV 

The stability of flow of a viscous fluid contained between two rotating concentric 

cylinders heated to different temperatures is investigated. Necessary and suffic- 

ient conditions of stability (in the small) are indicated for such flow with respect 

to three-dimensional space-periodic perturbations, when the angular velocities of 

cylinders are equal. Stability and instability criteria are derived for the limit 

case of infinitely small clearance between the cylinders. It is shown that under 

certain conditions the loss of stability is related to monotonic perturbations. 

1. Statement of the problem. Let a viscous homogeneous heat-conducting fluid be 

contained between two infinite solid concentric cylinders. We denote the radii, angular vel- 

ocities, and temperatures of the inter an outer cylinders, respectively, by R,, % 0, and 
R,, Q,, 0%. We assume that external mass forces are absent and that the rate of flow through 

the cross section of the intercylinder space is zero. As the scales of length, velocity, 

temperature, and density we take R,, QJ,, @,r and the fluid density at temperature 0,. 

In the cylindrical system of coordinates r,cp,z (the z -axis coincides with the axis of 

cylinders) the Navier-Stokes equations of continuity, heat conduction, andof state areofthe 

form 

+=_?-v,, f t (V div V’- rot rot V’) , -$- + div (p’V’) = 0 (1.1) 

$=&AT’-(V’,V)T’, P’=l-@l(T’-l) 

*n R>,R, 

s s uz’rd rdq = 0; V’ = (,&‘, up’, v2’} h=q!L, p+ 
0 1 

A=&++++&-++$, 

v= + I -+ -+I, _d.$ 
= % + (V’. v) V’ + [- + (vrp,)2, f V,,Vg,r o] 

The boundary conditions V’ = {O,l,O}, T’ = 1,r = 1, V’ = (0, QR, 0}, T’ = 0, r = R (1.2) 

(R = R, I RI, Q = Q, I Q,, 0 = 0, I@,) 

must be satisfied at the cylinder surfaces. 

Problem (l.l), (1.2) admits an exact solution (the Couette circular laminar nonisother- 

mic flow with logarithmic temperature distribution) I 

v, = (0, ar + b I F, 01, To = c In T + 1, no= J (a + b/2)2(l - f~c@l In x) xdz + const (1.3) 
1 

a = (QR2 - 1) / (R2 - I), b = 1 - a, e = (0 - 1) / In R 

We impose on the flow (1.3) the infinitely small perturbations 

V’ = V, + V, T’ = T, + cPT, n’ = II, + I1 / h (1.4) 

and substituting (1.4) into (1.1) and (1.2), and linearizing the obtained problem in the 

neighborhood of flow (1.3), we obtain the stability problem 
al;, arr 
T+ wlF-+ Au,-G--$3 

Jrp 
+ -&+=Z2wIr:,- Ra w2T (1.5) 

V, = urn = v, = T = 0 (r = 1, r = R), (Ra = j3cB1P, o1 = a+ b/p, co2 = o12r, ,gI = -20, g, = 1 /r) 
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which is represented here in the Boussinesq approximation PO, << 1 /l/. 
Note that the validity of linearization of the stability problem (1.51, i.e. the admis- 

sibility of assessing the stability (in the small) of flow (1.3) on the basis of the analysis 
of the linearized stability problem (1.5) was justified in /2,3/, 

Henceforth we assume that perturbations of v, T, and R are periodic in the azimuthal 
and axial directions of specified periods 2nIn and 2nia , respectively, with m = 0,1,2, . 

.I ; CZ > 0; 7nz + a2 # 0. 

2. Stability relative to three-dimensional perturbations. The following two 
theorems establish the necessary and sufficient stability conditions for the flow (1.3) relat- 
ive to three-dimensional perturbations of arbitrary periodicity, when the cylinders rotate at 
the same angular velocities. The proof is based on the methods by which was obtained the 
simple proof of the Singe criterion (ax'- I> 0) /4/ of the Couette isothermic flow stabil- 
ity relative to rotationally symmetric perturbations (independent of Cp ). 

Theorem 2.1. Let us consider the case when the two cylinders rotate at the same 
angular velocities (a = 1) and the gap between the cylinders is not too large (In R < n). 
For the flow (1.3) to be stable relative to three-dimensional infinitely small periodic per- 
turbations at any Reynolds numbers &;- 0 it is sufficient that the outer cylinder temperat- 
ure does not exceed that of the inner cylinder (Na :< 0). 

Proof. Let 12 f. Multiplying the first equation of system (1.5) by u,, the 
second by r$, the third by L',, and the fifth by - P lli1 r2T, adding the obtained equalit- 
ies and integrating over the region D : (1 < r c< I?, 1 ‘p / < n I m, 1 z 1 ..< FI / a} with weight r, 
we obtain 

iyro - I) Ra 97'") rd rdcpdz = - (J1 + .TZ)!h + Ha (I:, + J,),‘h (2.1) 

Let us consider the functional 

on the set of smooth real functions x(r) which vanish for r = 1 and r=R. Using the vari- 
ational principle for the Sturm-Liouville problem 

we find that 

where the minimum for the function 

(2.2) 

Taking into account that according to the condition ln R < ?c, we have from (2.2) that 
the functional J(T) is nonnegative. But then the right-hand side of equality (2.1) is neg- 
ative and the flow (1.3) is stable for any jt> Cl and Ra < 0. The theorem is proved. 

Theorem 2.2. Let D = 1. If Ra>O, then the flow (1.3) looses its stability for 
fairly large A. 

Proof. It suffices to show that for some h the spectrum of stability of.flow (1.3) 
contains an eigenvaiue o with a positive real part. We set in (1.5) 

I?’ Dlk _ I‘z T n 
-__...L=l___=~::---= eo,+ivla (2.3) 
u (4 v(r) IL (r) z(r) rl (Q 

The substitution of (2.3) into (1.5) yields when 52 : 1, after the separation of variabl- 

es, the spectral problem 
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IL,,, - h(s + im)lL,,u = - m2h Ra T, IL - hP(o + inz)]z = h&/P, 

du 
dr- --u=z=O (r=l,r=R) 
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We set o = cae _ i where crRe is any positive number, and shall show that this eigen- 

value (r for m = 1 and fairly large )r belongs to the spectrum of problem (2.4). 

When m=l and c = r~ne-i, the operators in the left-hand side of system (2.4) can be 

represented as 

-r(L1-_hPoRc)=-~o~~l~Xe, r(L1--haRe)L1=~J~-XI~~S~~d~~, (2.5) 

X0= X2 = l/I~(r~/hPrJ’~~), x1 = rl: (r1/ hPol~e) 

X3= x6 = l/I1 (r I/hoRc), x4 = rl,2 (r 1/ AaRe) I x,; = l/r. x, = r 

where 1, are modified Bessel functions of the first kind. 

With m=land CJ = cne _ i problem (2.4) is equivalent to the integral equation 

u = pBu, p = h2Raf (s.)(r)=~G,(r,p)~G~(p,s)~u(s)rlspd~ 
1 1 

(2.6) 

where G, (r, P) and Gz (r, P) are Green's functions of differential operators defined by the 

first and second of equalities (2.5) with conditions 'F = 0 and duidr-u=O (r=l,r=R), 
respectively. 

On the basis of results in /5,6/, using (2.5) and (2.6) we conclude that B is an oscil- 

lating operator. But then there exists a sequence of values of p: pl< pz < . . . . pn+ M such 

that Eq. (2.6) has a nontrivial solution and, consequently, the flow (1.3) looses stability 

for fairly large h. The theorem is proved. 

3. Stability with respect to two-dimensional perturbations. Below, we 

consider the stability of flow (1.3) with respect to plane and rotational symmetric perturba- 

tions (independent of z and 'p, respectively) inthecaseofaninfinitely small clearance be- 

tween the cylinders. The sufficient conditions of stability of flow (1.3) with respect to 

rotation symmetric perturbations for arbitrary clearance between cylinders appear in /7/. 

Let us assume that the clearance between cylinders is infinitely small (R-+1), the 
cylinders rotate at the same angular velocities (Q = I), and the perturbations are plane. 

Setting in (1.5) 

1' I’v 0 T )_ = - = 1 =-=Z_= @+imar , r--l ‘P--t 
u (J.) 1’ (4 u! (4 z (2) 4 (4 x=R--f* y=R-_l, &=(R--)*h 

and neglecting terms of order R-l, after separation of variables, we obtain the spectral 
problem 

(11, - h,~)A,,,u = - mzhl Ra T , (A, - AloP) z = &u, A,, = d2 / dx2 - m2 (3.1) 

du / dx = u = z = 0 (x = 0, x = 1) 

which except for the notation, coincides with the problem of convection onset in a plane hori- 

zontal fluid layer between solid boundaries. Using this analogy it is possible to verify 

that the eigenvalues (5 of problem (3.1) which lie in the right half-plane (cae > 0) are real 
for any A,> 0. 

It follows from this that in the coordinate system which rotates at the same angular 
velocity as the cylinders, the plane secondary flow induced by the loss of stability the flow 
(1.3) is stable. In the stationary coordinate system the plane secondary flow is self-oscil- 
lating of the type of azimuthal waves whose phase velocity is equal unity. 

Let us consider the case of rotating symmetric perturbations. We assume that the clear- 
ance between cylinders is infinitely small and that the cylinders rotate at infinitely close 

angular velocities, with M = (Q - 1)/ (R - 1) bounded as R+l and Q-1. 
Setting 

U, = u (5) emI cos ccz, vQ = u (5) eof cos az, v, = 20 (x) eoL sin az, T = 7 (x) eOl cos az 

r! = 4 (x) eof cos az, x = (r - 1) / (R - I), h, = (R - I)*A 

and neglecting terms of order a-1 and Q - 1, after separating variables we obtain the 
spectral problem 

(& - &U) AC& = a*h, (2~ - Ra-r), (AZ - &s) v = h, (M + 2) u, (A, - h,oP) T = h,u (3.2) 

duidx=u=u=z=O (x = 0, 5 = 1) 
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Theorem 3.1. If the inequalities 

Ra,< 0, M + 2>0 (3.3) 

are satisfied, then for any Reynolds number h,> 0 all eigenvalues c of problem (3.2) lie 
within the left half-plane (oae< 0). If, however, the inequalities 

Ra > 0, M -t 2 < 0 (3.4) 

are satisfied, then at fairly large h, the spectrum of problem (3.2) contains at least one 
eigenvalue CT inside the right half-plane (one> 0). 

Proof. Let inequalities (3.3) be satisfied. Multiplying the first equation of system 
(3.2) by U, the second by 5, and the third by Z, integrating with respect to I from 0 
to 1 and separating in the obtained equalities the real and imaginary parts, we obtain 

where Jk (k = 1, 2, . . . , G) are nonnegative functionals. On the basis of conditions (3.3) we 

obtain from (3.5) uRe< 0. 
Let now inequalities (3.4) be satisfied. By inverting the operators in the left-hand 

sides of system (3.2) using Green's functions, we reduce problem (3.2) for any o> 0 to the 

single integral equation 

u = a%,2Bu, B = B, -t B 2, (B,u)(r)=RaSI;,(2,y)~G,iy,s)u(~)dsdy (3.6) 
" " 

where G, (x, y), G, (x, y) and G, (z, y) are Green's functions of the differential operators(&-&c) 

&4, -(& - h,o) and -(Aa - &UP) with boundary conditions du / dx = u = 0, v = 0 and t = 0 

(.c _ 0, z = I), respectively. 

Using the results of /5,6/ we find that operators B, and B, are oscillatory. Then 

applying the data in /9/ and taking into account inequalities (3.4), we obtain the following 

statement. For any cs> 0 operator B is u,-positive in the cone of nonnegative functions 

and, consequently, there exists a h, such that the integral equation (3.6) has a nontrivial 

solution. The latter means that the spectrum of problem (3.2) contains at some h, a positive 

eigenvalue 0. The theorem is proved. 

Remarks lo. A slight change in the proof enables us to establish that whenM-t:! 0 
the whole spectrum of problem (3.2) lies inside the left half-plane at any Ras<o,h,>o, 

while for Ila>O and fairly large 1, part of the spectrum is in the right half-plane, and the 

whole /part of the / spectrum lying in that half-plane is real. 

20. It follows from Theorem 3.1 and Remark lo that at the limit R-1,5! -1 the fulfil- 

lment of inequality (3.4) is sufficient for stability of the flow (1.3) with respect to rotat- 

ing symmetric perturbations of arbitrary periodicity and any &>O, in order that inequali- 

ties (3.3) are fulfilled, while for the instability of flow (1.3) at some h, the fulfillment 

of condition (3.4) is sufficient. If ‘W++=o, then for stability of the flow (1.3) at any 

h, > 0 it is necessary and sufficient to fulfil the conditions Rag 0, and the secondary 

rotating symmetric flow induced by the loss of stability of flow (1.3) is steady. 

Theorem 3.2. Let us assume that the Prandtl number P = 1. If all eigenvalues 0 of 

problem(3.2) are to be contained within the left half-plane (oae< 0) at any h, > 0 , it is 
necessaryand sufficient that the inequality Ra,( 2(n/I + 2) is satisfied. The eigenvalues c 

thatlie in the right half-plane (aRe> 0) are real. 
Proof of this theorem is similar to that of Theorem 3.1. Note that when P = 1, the 

relation u (,$I f 2)r is satisfied, which results in considerable simplifications. 

The author thanks V. I. Iudovich for constant interest in this work. 
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